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A B S T R A C T  

It is proven that the L-" spectrum for certain non-semisimple, non-nilpotent 
svmmetric spaces is multiplicity-free. The spectrum and spectral measure are 
computed precisely for symmetric spaces corresponding to non-compact motion 
groups. Somewhat less complete results on the L-" spectrum --  in both the 
Mackey Machine and Orbit Method modes - -  are given for general semidirect 
product symmetric spaces. 

1. Introduction 

Let G / H  be a symmetric space, that is, G is a Lie group and H = H ~ is the 

stabilizer of an involutive automorphism ¢r of G. The quasi-regular representa- 

tion R = Re , ,  of G on L2(G/H) is an object  that has commanded  t remendous 

amounts of attention - -  especially in the case that G is semisimple. Recently 

there has been an upsurge of interest in non-semisimple symmetric spaces. Much 

of this has evolved out of the active study of solvability (and other properties)  of 

invariant differential operators  on homogeneous  spaces. The usual questions are 

addressed: (1) when is L2(G/H) multiplicity-free; and if so (2) describe as 

explicitly as possible the spectrum and spectral measure.  As one might expect, 

most of the analysis has been confined to the case of nilpotent groups. A prime 

example is Benoist 's  result that the spectrum is multiplicity-free (valid when G is 

exponential solvable). It is my purpose in this paper  to present some results on 

the spectrum for non-niipotent,  non-semisimple symmetric spaces. It is well- 

known that in such a situation, the spectrum may not be multiplicity-free. Here  I 

utilize Benoist 's  scenario to specify a class of spaces for which the spectrum is 
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multiplicity-free. I also study the more difficult problem of actually describing 

(explicitly) the contents of the spectrum and the spectral measure class. 

The paper is organized into four sections in addition to the introduction. In the 

second section I generalize the classical situation of a symmetric space associated 

to a motion group to allow a "non-compact group of rotations" (Theorem 2.1). 

The arguments are essentially classical, but the number of examples is enor- 
mous. This allows me to illustrate that there are myriad possibilities for the 

spectrum of a symmetric space. I organize the question of the composition of the 
spectrum around the idea of how closely it resembles that of the regular 
representation, and I enumerate examples to illustrate the various possibilities. 
In section 3, I apply Benoist's criterion to semidirect product spaces. Basically, I 

look at G = KS where S is exponential solvable and normal, tr is an involutive 

automorphism of S that is stabilized by K (which is otherwise arbitrary) and 

H = KSL I show that L2(G/H) is multiplicity-free (Theorem 3.4). The most 
interesting example is when S is the nilradicai of an arbitrary parabolic group, K 

is its Levi component, and tr is the canonical involution (which I define in 

Example 3.5 (iii)). In section 4 the issue of explicit information on the spectrum is 

taken up. The preliminary result - -  which is folklore - -  is that the spectrum is 
contained in 

(1.1) {zr E 0 : ~'" ~ #}. 

Indeed it may actually be smaller. But in the nilpotent case, Benoist cites work of 
Grelaud to conclude that (1.1) is the precise spectrum. He also gives an orbital 

description of the spectrum and the spectral measure. We give three results. One 
is a uniqueness theorem which relates the spectrum of L2(G/H) to that of 

L2(S/S ") (Theorem 4.1); a second shows that no Mackey obstruction may enter 

into the group extension representations that occur in the spectrum (Proposition 
4.3); and the third is a partial result on a generalization of Benoist's orbital 

description of the spectrum (Proposition 4.6). Finally, in section 5 we supply two 

further pieces of information. The first is a negative answer to a question of 

Corwin which asked if a multiplicity-free representation quasi-equivalent to the 

regular representation could always be constructed from a symmetric space in 

the nilpotent case. The second is an introductory comment on a specific problem 

in the general study of spectral theory for non-symmetric homogeneous spaces. 

2. Abelian symmetric spaces 

The classic situation of a symmetric space associated to a motion group is the 

following. Let G = KV be a semidirect product of an abelian normal subgroup 
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V with a compact group K. The description of the spectrum of L2(G/K) is 

familiar. The irreducible unitary representations of G are parameterized by the 
Mackey Machine [12]: 

~x,, = Indr~vcX, 

Furthermore we have 

(2.1) R~,r = ~J'rX. 1 d,, ~ 
IK 

where d:? is the image of Haar measure dx on Q under the projection 

Q---, Q/K. 
In fact the compactness of K plays a limited role (specified momentarily) in 

the above. Let G = H V  be a semidirect product of an abelian normal subgroup 

V with any separable locally compact group H. If we assume V/H is countably 

separated we can still obtain irreducible representations of G via the Mackey 
Machine [12]: 

1r~,, = Ind°z~crx, X E V, r E/4~. 

THEOREM 2.1. Suppose V/His countably separated. Then R~/, is multiplicity- 
free and the spectrum is described by 

/H 

where d~ denotes any pseudo-image of Haar measure dx on Q under the natural 
projection Q --) V / H. 

NOTES. (i) We see that the only role of compactness is to guarantee the 

smoothness of V/H and that we can take the image measure instead of the 
pseudo-image. 

(ii) It goes virtually without saying that the involutive automorphism of G is 
tr(hv)=hv -1, h E H ,  v E  V. 

PROOF. We use disintegration of measures. Fix Haar measure dv on V and 

let dx be the dual measure. We write 8(h) for the modulus of the automorphism 

v --~ h • v = hvh -1 on V. Having chosen a pseudo-image d)~, there are uniquely 

determined relatively invariant measures d/zx on H/Hx such that 

f~ = f~, fn f(h'x)dlz~(h)dx" , f ( x ) d x  , .  ,,,~ 
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Combining this with the Fourier transform ff  on V, we have an intertwining 

operator 

The action of R = Re, u on L2(Q) is 

(2.2) 

But the space 

R ( h v ) f ( x )  = h -~" X(v) f (h  i. X)6m(h ). 

f ~H Ch.~dtzx 
is actually G-invariant (this is obvious). If we denote the representation of G 

thus obtained by ~r(x), then the preceding proves that 

R = /H 
But it is easy to identify 7r(x) with 7r~.1. Indeed the representation 7r~.1 = 

Ind~a, vX may be realized in the space L:(H/H~)  according to the rule 

~'~,l(hv )f(yH~ ) = h-~ . y • X(v ) f (h- '  yH~ )6(h ) "2. 

When we identify L2(H/H~) = f~/ ,Ch.~dlz~(h) the action becomes exactly that 

of (2.2), i.e. of w(X). The proof is completed by invoking the Mackey Machine to 

assert that ~r~,l ~ 7r~,~ if X and X' are in different H-orbits. (Note we have used 

the fact that the modulus of the relatively invariant measure on H/H~ agrees a.a. 

with 6 - -  see [6, II].) 

One of the most interesting questions one can ask about the decomposition of 

R~.H in Theorem 2.1 is to what extent it mirrors that of the regular representa- 

tion. The irreducibles in the regular representation occur with multiplicity equal 

to their dimension. A common problem these days is to find a natural or 

canonical construction of a multiplicity-free representation, quasi-equivalent to 

the regular representation. It is natural to employ symmetric spaces in this 

search. So how close to the Plancherel spectrum is the spectrum of R~.u? In 

order to facilitate our discussion of this question - -  both here and for more 

general symmetric spaces - -  we introduce some new terminology. 

DEFINmON 2.2. Let G be a Lie group, H the stabilizer of an involutive 

automorphism of G. We say that Ro.H is: 

(a) hefty if Ro.H ~ RG ; 

(b) average if Ra.n C Re ; 
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(c) slim if RG., is quasi-equivalent to a representation weakly contained in 

Re, but no subrepresentation of Re H C Re;  
(d) unusual if non6 of the above obtains. 

(Sometimes we abuse terminology by saying that G/H or H itself is hefty, etc.) 

Here: ~ means quasi-equivalent and C means quasi-equivalent to a subrep- 

resentation. If G is type I and we denote the (essentially unique) decomposition 
of a unitary representation T of G by T = f~ nT(rc)~rdlxT(Tr), then: (a) means 

the measure classes of/-tR~.H and/.tR~ are the same; (b) means/zR~.,, is absolutely 
continuous with respect to /~R~; and (c) means SuppRe,  H_C_ S u p p R e  but 

/zRo(Supp R e • , ) =  0. The unusual case can arise for two reasons - -  either an 

open subset of Supp Re, ,  is disjoint from Supp Re ; or Supp Rc.~ C Supp Re but 

part of the spectrum is average and part is slim. Hopefully the following will help 

to clarify these ideas. 

For Riemannian symmetric spaces G/K, Re,• is average if G has finite center, 

but otherwise slim. However  non-Riemannian semisimple symmetric spaces may 
be unusual. As for abelian symmetric spaces, all possibilities (a)-(d) can occur. 

First if H is compact, only (a) and (b) are possible. For example, in the 

symmetric space G/H corresponding to the Euclidean motion group G = 
SO (n) .R" ,  H = SO(n) ,  H is average when n > 2 ,  but hefty when n =2 .  If we 

consider instead the symmetric spaces G/H corresponding to the affine motion 

group G = GL (n, R).  R", H = GL (n, R), then H is slim unless n = 1 in which 

case it is hefty. The symmetric space G/H where G = SOe(n, 1) ,÷1 • R , H =  

SOe(n, 1) is unusual because it cannot decide between slim and average• But if 

we replace the Lorentz group by symplectic groups Sp (n, 1), then the situation 

becomes unusual because of the support condition. 

Let us conclude by noting that in general Re . ,  is hefty (resp. average) itt H~ is 

trivial (resp. compact) for almost all )t" E "v'. Finally Re . ,  is irreducible iff H is 
essentially transitive on 17. 

3. The Benoist scenario 

As always G is a Lie group and H is the stabilizer of an involutive 

automorphism ~r of G. The following definition is from [1]. 

DEFINmON 3.1. We say H has property (MF) if there is a submanifold O in 

G such that 

(i) the multiplication map m : H × Q ~ G is a surjective submersion; 

(ii) Q ' = Q ;  

(iii) Vq E O, o(q)q @ H; 
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(iv) Vh E H, hOh -1= O. 

(Benoist says H has the property ~.) 

EXAMeLE 3.2. If G is exponential solvable, then the stabilizer of any 

involutive automorphism o" has property (MF). Benoist [1] proves this with 

O = {g E G : or(g) = g-'}. 

Benoist then proves 

THEOREM 3.3. If for the symmetric space G/H,  the subgroup H has property 

(MF), then Ro. ,  is multiplicity-free. 

Now we place ourselves in the following situation. S is a Lie group with 

involutive automorphism cr such that the stability group T = S ~ has property 

(MF). According to Theorem 3.3, Rs.r is multiplicity-free. We assume that a Lie 

group K acts on S by automorphisms, giving a semidirect product G = KS. We 

assume further that K preserves ~r, that is 

k . c r ( s ) = c r ( k . s ) ,  k E K ,  s E S .  

In particular K preserves T. We assume finally that K preserves a submanifold 

Q of S with respect to which T has property (MF). (This last assumption will 

hold automatically in the cases of interest we have in mind.) 

THEOREM 3.4. The subgroup H = K T  has property (MF) in G for the involu- 

tion 
or(ks) = ktr(s), k E K, s E S. 

There[ore Ro, n is multiplicity-free. 

PROOF. According to our assumptions there is a submanifold Q in S which 

satisfies properties (i)-(iv) of Definition 3.1, and which is K-invariant. In order to 

demonstrate the theorem, it is enough to verify that Q satisfies the same four 

properties with respect to H = KT. 

(i) Since m ' T x Q - - ~ S  is a surjective submersion and G = K ' S ,  it is 

obvious that the multiplication map m" K T x  Q--~ G is also a surjective 

submersion. 
(ii) Q - l =  Q by hypothesis. 

(iii) Vq E Q, we have tr(q)q ~ TC  H. 

(iv) If h = kt E H, then hQh -~ = ktQt-~k -~ = kQk -~ = k . Q C  Q. The latter 

is true Vt E T, Vk E K. In particular k - ' .  Q C Q, and so h • Q = k • Q = Q. 

The extension from Benoist's Theorem 3.3 to our Theorem 3.4 is not difficult. 

However it is interesting for two reasons. First of all there are many nice 
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examples to which it applies - -  a few of which we describe momentarily. Second, 

as with Theorem 3.3, it leaves to the imagination the description of the precise 

spectrum of R6.n. Even in the case of exponential solvable groups the identifica- 

tion of the precise spectrum is a delicate matter - -  not really settled by Benoist 

(see also Remark 3.7(ii)). But even if we assume that the spectrum of L2(S/T) is 
known, we are left with the interesting problem of describing that of 

L2(KS/KT). What could it be? Since we are dealing with semidirect products 

G = KS with K essentially arbitrary, the most reasonable description in general 

of the representations of G which occur in Rail  should be through the Mackey 

Machine. The candidates are ~r,., = Ind~ r, 7 E S in Supp Rs.T, ~" E G, with ~" Is 
a multiple of % The work of section 2 suggests that for each % there exists a 

unique r such that rr,., is in the spectrum (see Theorem 4.1). But what might it 

be? Even though Gv splits Gv = KvS, and even if the obstruction to extending 11 
to a representation of K,S is trivial (i.e. there is no Mackey co-cycle - -  see 

Proposition 4.3), there is still an ambiguity. Namely the extension of 3t to a 

representation ~- of KvS is only unique up to an arbitrary unitary character of K,. 
How do we specify it? 

We shall deal with these interesting questions in section 4. In the remainder of 

this section we supply examples to illustrate Theorem 3.4. As in section 2 we 

examine various possibilities in terms of the relation of Ran to the regular 

represenation of G. All unexplained claims about spectra are consequences of 

the results in section 4. 

EXAMPLES 3.5. (i) If S is exponential solvable, then we may take Q = 

{s E S : tr(s) = s-l}. If we have an action by a group K which preserves tr, then 
the submanifold Q is automatically K-invariant. We shall deal essentially only 
with this case in the paper. 

(ii) (Abelian symmetric spaces). If S is abelian and o-(s) = s -1, then any group 
K of automorphisms of S preserves or. We obtain the spaces of section 2. 

(iii) (Canonical involution in parabolic groups). Let P be a parabolic subgroup 

of a reductive Lie group G of the Harish-Chandra class. Suppose P -- M A N  is 
its Langlands decomposition. We denote by A the (restricted) roots of (g, a), and 

by A ÷ the positive roots determined by N, i.e. A ÷ = {or ~ A : g~ _C rt}. We denote 

the simple roots in A + by • = {al . . . .  , or,}. Every ot ~ A + may be written uniquely 

a = X;=l n~m, n~ _-> 0. We define a canonical involution 19 on N as follows: 

For any a E A +, we set p I~a = + Id according as E;~ nl is even or odd, p is 

extended to rt = E~¢a+ fl" by linearity, and to N by exponentiation. 

It is fairly routine to check that p is an involutive automorphism. Now the key 
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point is that p is invariant under the action of MA.  This is simply because M A  

preserves each root space. Thus we are in the situation of Theorem 3.4 if we take 

S = N  and K any subgroup of MA.  When K = M A  we call the extended 

involution p the canonical involution on the parabolic P. 

It is clear that we have an enormous number of examples - -  the most 

interesting of which occur with the choice of K to be M, A, M A  or trivial. We 

illustrate the possibilities by examining several of these in the context of 

Definition 2.2. 

(a) Consider first the (minimal) parabolic subgroup of the split rank one 

semisimple Lie group G = SOe(n + 1, 1), n _--- 2. Then 

P = M A N  ~ SO (n) x R +. R". 

The nilradical is abelian, p = - Id and N ~ = {1}. Of course N / N  ~ is hefty. But 

we also have A is hefty in AN,  i.e. RaN.A = RAN. On the other hand M is average 

in M N  and M A  is average in P (when n > 2). More precisely, the generic 

representations of P are parameterized as follows. Fixing any h' E/V, h'~ 1, we 

have 

P zr, = IndM~NzX, z E/~/1, M1 = Mx ~ SO (n - 1). 

Then Rp.uA ~ lri is actually irreducible. (If n = 2 it is also hefty.) 

(b) Next consider the split rank one group G = SU (n, 1). Then the minimal 

parabolic P = M A N  has a (2n + 1)-dimensional Heisenberg group for nilradical, 
N p ~ ZN, A is a group of positive reals and M is a (slightly twisted) compact 

unitary group. All of the symmetric spaces K N / K N  ~, K = M, M A ,  etc. are slim. 

The same situation obtains with the other rank one simple groups. 

(c) Now let us examine the symplectic group G = Sp(2,R). A minimal 

parabolic subgroup P = M A N  of G has nilradical isomorphic to the well-known 

3-step 4-dimensional nilpotent Lie group, the group A is a direct product of two 

positive real lines and M is finite. If we write E={a, /3},  then rt= 
ga +g~ +ga+~ +g2a+~ and N ~ = expg~+~. In fact N ~ is hefty in N and A N  v is 

hefty in AN.  

(d) Here is a general result about parabolics with abelian nilradical. To 

demonstrate it, we first state another general result for arbitrary parabolics. 

PROPOSITION 3.6. The class of the representation Ind,~% is independent o[ 

This can be proven by generalizing the argument of [8, Thm. 3], but I omit the 
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rather long details here. Now suppose N is abelian. Then N p = {1}, and it follows 

that A is hefty in AN. This is because 

Ind  l---Ind Nlnd ,l = IndaaNf  rd,=f  IndaaNrd~" ---oo Ind~N1. 

That is, RAN,  A ~" RAN. 

REMARKS 3.7. (i) We leave to the reader the pleasure of working out other 

examples - -  for example, a nice one is the minimal parabolic in SL (4, R). For 

specific groups of low enough dimension, the precise spectrum can be obtained 

by a combination of the techniques of section 4, Mackey or Anh reciprocity [7, 

II.A.4], Proposition 3.6 and the use of bare hands. 

(ii) For more general situations or general classes of semidirect product 

symmetric spaces, the actual determination of the spectrum is a difficult job - -  as 
it is with any class of non-abelian symmetric spaces G/H. Reciprocity suggests 

one should look among the irreducibles of G which contain an H-fixed vector. 

For nilpotent, or more generally exponentially solvable, symmetric spaces S/T, 
such reciprocity suggests the following for the spectrum of L2(S/T) in S. It 

should be parameterized via the Kiriliov map by tl/T, t ~ = {0 E s* : 0(t) = 0}, and 

the spectral measure should be a pseudo-image of Lebesgue measure. Benoist 

obtains this result for the nilpotent case as a consequence of [5]. In general it is 

not known. We shall say more about this in the next section. 

(iii) The setup of Theorem 3.4 may appear excessively simple. Conceivably 

there could be involutive automorphisms on a semidirect product G = KS which 

are more elaborate on K. But in fact that is almost impossible to arrange. It is 
very difficult to obtain an involutive automorphism tr on G = KS with o- acting 

non-trivially on K unless the product is direct or o" Is is virtually trivial. (We do 
not have a precise result.) 

4. Results on the spectrum 

Given an exponential solvable symmetric space S/T, or a semidirect product 

extension KS/KT, we know that the corresponding quasi-regular representation 

is multiplicity-free. The problem then is to describe as explicitly as possible the 

spectrum. I have already discussed the following ideas: in general the spectrum is 

contained in but may not equal the set {Tr E G : ¢r ~ = I?}; in the exponential 
solvable case the latter is naturally isomorphic to tl/T; by involving more 

general disintegration work, Benoist has concluded that this is the precise 

spectrum in the nilpotent case. If one can believe the results of [2], it would also 
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be the spectrum in the exponential solvable case. But no proof of the results in 

[2] have appeared; and I know of no independent  corroboration. 

In this section the general approach we take is as follows. We assume that the 

spectrum of L2(S/T) is known - -  can we derive the spectrum of L2(KS/KT)? 
We give several results addressed to this problem - -  most from the perspective 

of the Mackey Machine, one from an orbital perspective. 

As in section 3 the picture is: S /T  is symmetric, T has property (MF) w i t h  

respect to tr, and K is a group of automorphisms of S preserving all relevant 

data. We set G = KS, H = KT. (We often assume $ is exponential solvable.) We 

make three further assumptions - -  namely S is type I, S/K is countably 
separated and G is type I. Then the irreducible unitary representations of G are 
parameterized by lr = ¢r~.~ = Ind , : ' ,  y E :~, G~ = the stability group, 1" E ( ~  = 

{r E 0 r  : ~" Is = multiple of y}. We denote by b D = SCS.T the spectrum of Rs.r, i.e. 
the smallest closed subset of S which supports the spectral measure (class) #s,r 

of Rs, r. So according to Theorem 3.3 we have 

(4.1) RS, T = ydlzs.r(y), 
,T 

a multiplicity-free decomposition. 

THEOREM 4.1. For l~S.T-almost all y E S there exists a unique irreducible 

unitary representation ~" = ~-(y) of Gv = K~S, whose restriction to S equals y, such 

that 

R6.H = "n',.,t,)d/zo.n (~r). 
H 

Furthermore 1~6.H is a pseudo-image of I~s.r under the map S ~ S/K. 

PROOF. The representation R~.~ acts in Le(GIH)~  L2(SIT), so in principle 

we could use the same idea as in the proof of Theorem 2.1. However,  unlike the 

abelian case, we do not have the explicit intertwining operator that effects the 

disintegration (4.1). Instead we reason as follows. We know by Theorem 3.4 that 

(4.2) R6.u = 1r,.d/-~G.n(y, ~') 
,H 

for some measure class #o,~. Restrict both sides to the subgroup S. We obtain 

I;o (4.3) Rs.r = ~r,,, [sdl~G,n('l', ~'). 
,H  
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But the decomposition ~ry,, Is is well-known (see e.g. [6]). In fact 

(4.4) rr~., Is I -~ = k .  3' ~ ldim,/dimvd/.tv (k  ), 
J K  / K  v 

for the (relatively) invariant measure class /z~ on K/K~,. Now by examining 
equations (4.1)-(4.4) we can conclude the following facts: 

(i) The representations that occur in the support of R~.n must lie over 6eS.T. 

(ii) For ~s.r-a.a. 3' E S, we must have dim ~- = dim y for any ~- E t)~ such that 

1r,,, E 9°6,,. That is, 3' extends to a representation q of G~ in the space of 3'; and 

the only possibilities for other such extensions are q @ X, X a character of 

G, IS = K,.  

(iii) Since 7r~., Is~r~,,®~ Is for any character X, by the multiplicity-free 
property of Rs, r, we must have for/Zs.r-a.a. 1, E S, a unique choice of r ~ t)~ 

such that ~r~., E 5to.,. 
(iv) It is clear from (i)-(iii) that 5eo,, is Borel isomorphic to 9°s,r/K. Since the 

space G / H  = S / T  is G-homogeneous,  we see from equations (4.1)-(4.4) once 

again that the measure / so , ,  must be equivalent to a pseudo-image/is ,  r of/zs, r 

under the projection S ~ S/G.  

This completes the proof. We summarize as follows: we presume to know the 

spectral decomposition. 

Rs, r = 3"d~s,r( 3" ). 
,T 

Theorem 4.1 says that there is a map 3' ~ r(3') such that 

Ro, n = ¢r,.,t,)dlis.r( )' ). 
, r l K  

To understand completely the latter decomposition we must describe the 

correspondence 3'--* r(3'). If S is abelian, it is easy: ~-(3')= 1 x 3' on K,S. What 
about non-abelian S? We can deduce two results by a closer inspection of the 

Mackey machinery. First since 3' extends to a representation I" of G, = K,S,  then 

all such extensions are obtained by multiplication by a character X of K,, r @ X- 

If K, has no non-trivial characters, then r(3') is uniquely determined. But we can 

say more. According to (1.1), the support can only involve representations ~r 

which satisfy ~-~ = Ii-. Now tr },:, = Id. Since 

1r~,,~) = ~'~,~,,~,r and "k~,,~,) ~ 1r~,~<~), 

we have 
K~ = K  v. = (K,)" =K~. 
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Hence 

,/.,r ~ ,/=. 

If we modify ~" by a character X of K ,  then since tr ]K~ ~-Id, we have 

(~" @ X f  = z ~ Q X. But z @ X = ? Q X. It follows that 1' = )?. In particular the 

ambiguity in z(3`) is only up to characters of order 2 of the group K~. 

COROLLARY 4.2. I[ [or t~s.T-a.a. 3' E S, the stability group Kr supports no 

non-trivial character of order 2, then there exists a unique extension z = ~( 3  ̀) of 3" 
to G~ = KrS such that ~'~ ~- ~, and then 

R~.H = [ 7rv.~(v)dlJ.s,T( 3" ). 
J :es . T / K  

If the groups K~ have characters of order 2, then the extension ~'(3') is not 

unambiguously specified. Nevertheless we can say somewhat more. Namely we 

assert that the Mackey obstruction for extending 3' to a representation of the 

little group K~ vanishes. Indeed the Mackey Machine [12] says there exists an 

extension of 3' to a (likely) projective representation ~ of G~. A unique co-cycle 

class to, is thus determined on Kv. The representation ~" = z(3') must be of the 
form z = ~ Q v, where v is an irreducible projective representation of K~ (with 

co-cycle o3~). But dim ~" = dim 3' f f  dim 1, = 1, i.e. v is a projective character. 

Then r itself qualifies as a candidate for ~. This can only happen if the co-cycle 

class toy is trivial. We obtain 

PROPOSITION 4.3. For izS.T-a.a. 3" E S, the Mackey obstruction to extending 3" to 

a representation of Gv is trivial. 

Still there remains the ambiguity in the map 3'--~ z(3') up to characters of 

order 2. There is a natural conjecture I would like to formulate. It applies to 

most cases. By the general orbit method [4], [10], one has associated to each 

3' E S an element 0 E s lY(S)  which is an admissible, well-polarizable func- 

tional. Assume that generically, these are full (see [11]) - -  i.e. So is connected, 

e.g. if S is exponential solvable. Then according to f11] (see also [3]), there exists 

a canonical extension "~ of 3' to / ( , ,  the canonical 2-fold cover of Kr  Assume now 

that S is simply connected solvable and almost every 3' E 5Ps.r corresponds to an 

element O ~ , d ~ ( S )  which has a K~-invariant polarization (e.g. if K is connected 

amenable. Indeed it should hold anyway since the Mackey obstruction vanishes). 

Then ~ passes to Kv and I presume 

CONJECTURE 4.4. 7(3') = ~. 
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EXAMPLE. Take S to be the Heisenberg group so that ~ is generated by X, Y, 

Z with [ X , Y ] = Z .  Select K = Z 2 = { 1 ,  e} acting by e : X ~ - X ,  Y - - * - Y ,  

Z ~ Z. The representations of G = KS are w,.~ = 8 Q T × T, where T = 7, if T 
has central character exp u Z  ~ e ~" and 8 (e) = e j, j = 1,2. Define an involution 

by ~ : X--* X, Y---~ - Y, Z--~ - Z. Then Ro.H = f® ~r,,~dt. Note however that the 

representations ~r,.~ also satisfy w~ ~ #. 

We have also verified Conjecture 4.4 when ~ is abelian. Now let us verify it 

when essentially no K~ has an order 2 character. In fact to do that it suffices to 

establish 

PROPOSITION 4.5. The canonical representation ~ of Kv satisfies ~ ~ ~ ~ T. 

PROOF. The equivalence q ~ q  is obvious. Now if Y E S ,  since K is 

connected amenable we can always choose 0 Ert* such that ~/= T(O), 0 is fixed 

by K~ and has an invariant polarization b. Then the space of T is realized (via 

holomorphic induction) on a space of functions 

f : S ~ C, X * f = o) (X)/, X E b etc. 

S acts by right translation (see e.g. [7, VI. AD. The representation "~ = T ( -  0) 

also can be realized by the K,-invariant polarization b and it is clear that the map 

jr--. f is an intertwining operator for the action of K~. q.e.d. 

For our last result we would like to extend the orbital description of the 

spectrum of Ro,,  outside the realm of nilpotent groups, where it is fact - -  or 

exponential solvable groups, where it is speculation - -  to that of semidirect 

products. In order to insure that we deal with fact rather than fiction, let us 
consider co-compact nilradical groups, i.e. G = K N  with N simply connected 

nilpotent normal and K compact. Then we can make use of [9]. The irreducible 

representations of G are parameterized in an orbital fashion by the fiber 
diagram 

l 
where 9.1(G) is the allowable functionals in g*, 3~(G,~) = {~- E G~ : d~" = i~b 19~} is 

a finite fiber. We have an involutive automorphism ~r of N, preserved by K, 

M = N °, G = KN. Suppose 4~ E ~ ( G )  and 0 = 4) 1,- If ~/= T(0) E/(r, we have 

G~ = (3oN so that Go/No = G o / N  f3 Go -~ GoN / N = G , N  / N = K,  is compact. 

That is, any Levi component L of Go is compact. Any two such are No- 
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conjugate. Now suppose ~b (I) = 0. Then I claim ~b (I') = 0 for any Levi component  
of go. Indeed 1'= n .I, n E No. Thus if X E I ,  n = exp Y, Y E n o  we have 

6(n"  x )  = 6(e " Y(x)) = 6 ( x )  + ~(1 Y, x l )  + ~([ Y[ Y, x] l )  + . . . .  0 

because ~b (I) = 0, X E go and Y E no. Set 

9~,,, = { ~  ~ ~ ( O ) :  0 = 4, I . ,N .  0 n m ~ # 0 ,  ~0 )  = 0}, 

where I is any Levi component  of flo. Two things are clear from all we have done: 

fie.H is G-invariant and ~o.. projects bijectively onto 9-o,n/G under the natural 
projection (~ --* 9~(G)/G. 

PROPOSmON4.6. (i) The natural map (~+m)~---~fl*--->fl*/G is KM- 
equivariant. 

(ii) The quotient map (t + ra)~/KM--+ g*/G is injective. 
(iii) CONJECTURE. The image is precisely ff~,,~/G. 

PROOF. (i) This is obvious. 

(ii) We must show that if 4h, 4~2 E g*, ~b,(l+ m ) =  0, i =  1,2 and g .  4h = ~bz, 

then Oh1 and ~b2 are actually KM-conjugate.  Write g = kn. Since the subspace 
(~ + m) ± is preserved by K, it is no loss of generality to assume k = 1. Now the 

automorphism tr differentiates to g, and its transpose to" acts on g*. If 
E (~+ m) *, then 'o-(~b)= -~b. This is b e c a u s e  to-((~))] n = t o ( 0 ) =  - 0 -~- - { / ) I n  

(see [1, 4.3]), and 'cr(~b)l, = - 6  l, =0 .  Thus 

- -  1~2 = tor((~2) = 'o-(n • ~b,) = or(n). 'cr(~b,) = o - (n ) ( -  ~b,). 

Therefore o'(n)-~nEG,,. But if we write n = m e x p X ,  m EM,  X E q =  

{X E n : o-(X) = - X } ,  then ~r(n) = m e x p - X  and so o"(n)-~n = e x p 2 X  E (7,,. 
But then exp X E G~, and n • ~b~ = m • ~bl. q.e.d. 

(iii) I have not been able to prove this. If true, it would say that exactly as in 

Benoist 's nilpotent situation, we have that 5e~.n is parameterized by t)~/H. 

5. Additional remarks 

We provide here an answer to a question of L. Corwin. He asks: given N, a 

simply connected nilpotent Lie group, can one always produce a symmetric 

space N / M  such that RN.,~ is hefty? The answer is no. Here  is the example. The 

group N is the maximal nilpotent subgroup of the simple Lie group Sp (2, 1). It 

can be described via seven generators 

{X~;I_-< i_-<4}U{Zj :1_-<j_-<3}, 
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satisfying non-zero bracket relations 

I x , ,  = IX, ,  = z , ,  

[X l ,  X3] = [X2, X4] = Z2, 

IX , ,  X , l  = [x3,  x2]  = z3. 

This is a nilpotent group with square-integrable representations. Suppose or is an 
involutive automorphism with M = N ~. We know (by Theorem 3.3) that RN.M is 

multiplicity-free. Can it be quasi-equivalent to RN? The claim is no. Now or 

passes to an involution of n, and as such it preserves the center 3 of ft. Consider 

the transformation or 18- The eigenvalues can only be ---1. Suppose + 1 is an 

eigenvalue. Then is Z E 3 such that or(Z) = Z. In particular the one-parameter 

subgroup exp R Z  lies in M. But then every representation in the spectrum b°N,M 

corresponds to a linear functional in the N-invariant Zariski-closed subvariety 
(RZ)  l in rt*. It follows from [13] that M cannot be hefty. Hence or [~ = - I d .  

Next consider the involution induced by or on n/3, i.e. o r (X+ 3)= or(X)+3,  
X E n. It too may only have eigenvalues -+ 1. Moreover the matrix of the 

transformation 0./8 must be semisimple (since it has finite order). In particular, 

every generalized eigenvector is an ordinary eigenvector. Now we shall prove 

that there cannot be two independent eigenvectors whose eigenvalues have the 

same sign. That is, of course, preposterous since dim n/3 = 4. But indeed let 

X + 3 ,  Y +  3, X Z  3, Y Z  3 be independent eigenvectors with eigenvalue e 

(e = +- 1). Now [X, Y] E 3 (since 3 = [n, n]). But or [8 = - Id, therefore 

- [X, Y] = or[X, Y] = [orX, orY] ~ [eX + 3, e Y  + 3] = e2[X, Y] = IX, Y]. 

This is impossible since - -  as it is easy to check from the commutation relations 
V W E n \ 3, Z . ( W )  = R W + 3. So for every involution or of n, the transforma- 

tion or 18 has a positive eigenvalue, and the corresponding symmetric space is 

slim. 

Our final remark is the following. We have seen that the study of semidirect 

product symmetric spaces K S / K T  may present interesting problems in deter- 

mining their L 2 spectrum. Even when S is abelian and T is trivial, the spectra of 

L2(KS/K)  may enjoy different properties depending on the constituents. Also, 

the techniques brought to bear in the study are varied and interesting - -  e.g. the 

orbit method, Mackey Machine, reciprocity, independence of induction results, 

and more. In fact the abelian symmetric space K S / K  is a special case of a more 

general problem, in which little progress has been registered. Namely, describe 

the spectral decomposition of L2(G/K)  for any semidirect product G = KN, N 
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normal. Naturally we assume N is type I and that IQ/G is smooth. We seek the 
spectral decomposition for the natural action of G in L2(N). All of the 
previously enumerated techniques have a role to play in this problem which I 
hope to address in a future publication. 
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